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Solubility of drugs in aqueous solutions
Part 4. Drug solubility by the dilute approximation
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Abstract

As in our previous publications in this journal [Int. J. Pharm. 258 (2003a) 193; Int. J. Pharm. 260 (2003b) 283; Int. J. Pharm.
267 (2003c) 121], this paper is concerned with the solubility of poorly soluble drugs in aqueous mixed solvents. In the previous
publications, the solubilities of drugs were assumed to be low enough for the so-called infinite dilution approximation to be
applicable. In contrast, in the present paper, the solubilities are considered to be finite and the dilute solution approximation is
employed. As before, the fluctuation theory of solutions is used to express the derivatives of the activity coefficient of a solute in a
ternary solution (dilute solute concentrations in a binary solvent) with respect to the concentrations of the solvent and cosolvent.
The expressions obtained are combined with a theoretical equation for the activity coefficient of the solute. As a result, the activity
coefficient of the solute was expressed through the activity coefficients of the solute at infinite dilution, solute mole fraction,
some properties of the binary solvent (composition, molar volume and activity coefficients of the components) and parameters
reflecting the nonidealities of binary species. The expression thus obtained was used to derive an equation for the solubility of
poorly soluble drugs in aqueous binary solvents which was applied in two different ways. First, the nonideality parameters were
considered as adjustable parameters, determined from experimental solubility data. Second, the obtained equation was used to
correct the solubilities of drugs calculated via the infinite dilution approximation. It was shown that both procedures provide
accurate correlations for the drug solubility.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In our previous papers regarding the solubility
of poorly soluble drugs in aqueous mixed solvents
(Ruckenstein and Shulgin, 2003a–c), the fluctuation
theory of solutions (Kirkwood and Buff, 1951) was
used for their correlation and prediction. Such infor-
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mation is useful because poor aqueous solubility can
often affect the drug efficiency.

Whereas the first two publications of this series
(Ruckenstein and Shulgin, 2003a,b) were concerned
with binary mixed solvents, the third one (Ruckenstein
and Shulgin, 2003c) was devoted to the solubility of
drugs in multicomponent solvents.

In the above papers, the solubility of drugs in mixed
solvents was assumed to be low enough for the infi-
nite dilution approximation to be applicable. Let us
examine this approximation in more detail. The solu-
bility of solid substances in pure and mixed solvents
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can be described by the classical solid–liquid equilib-
rium equations (Acree, 1984; Prausnitz et al., 1986).
For the solubilities of a solid solute (component 2) in
water (component 3), cosolvent (component 1), and
their mixture (mixed solvents 1–3), one can write the
following equations
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where y
b1
2 , y

b3
2 , and yt

2 are the solubilities (mole
fractions) of the solid component 2 in the cosolvent,
water, and their mixture, respectively;γb1

2 , γ
b3
2 , and

γt
2 are the activity coefficients of the solid solute in its

saturated solutions in the cosolvent, water, and mixed
solvent, respectively;f L

2 (T, P) is the hypothetical fu-
gacity of a solid as a (subcooled) liquid at a given
pressure (P) and temperature (T); fS

2 is the fugac-
ity of the pure solid component 2; and{y} indicates
that the activity coefficients of the solute depend on
composition. If the solubilities of the pure and mixed
solvents in the solid phase are negligible, then the
left hand sides ofEqs. (1)–(3)depend only on the
properties of the solute.

The infinite dilution approximation implies that the
activity coefficients inEqs. (1)–(3)can be replaced by
their values at infinite dilution of the solute (γ

b1,∞
2 ,

γ
b3,∞
2 , andγ

t,∞
2 ). However, the solubilities of drugs

in aqueous mixed solvents are not always very low.
While the solubilities of various drugs in water (only
poorly soluble drugs are considered in the present
paper) do not exceed 1–2 mol%, the solubilities of
the same drugs in the popular cosolvents ethanol and
1,4-dioxane can reach 5–20 mol%, and the solubili-
ties in the water/1,4-dioxane and water/ethanol mix-
tures are often appreciable and can reach 8–30 mol%.
Therefore, the effect of the infinite dilution approxima-
tion on the accuracy of the predictions of the solubili-
ties of poorly soluble drugs deserves to be examined.

In the present paper, dilute binary and ternary so-
lutions (drug+ water, drug+ cosolvent, and drug+
water+ cosolvent) will be considered, hence the in-

finite dilution approximation will be replaced by the
dilute solution approximation. The range in which the
infinite dilution approximation is valid and the range
in which the dilute approximation can be used were
discussed byKojima et al. (1997). They pointed out
that the above composition ranges depend on the na-
ture of the solute and solvent and on the types of in-
termolecular interactions in the mixtures involved. For
example, mixtures with self-association of one of the
components have a narrower range in which the dilute
approximation is valid.

As for infinite dilution, the main difficulty in pre-
dicting the solid solute solubility in a mixed solvent for
a dilute solution is provided by the calculation of the
activity coefficient of the solute in a ternary mixture.
To obtain an expression for the activity coefficient of
a low concentration solute in a ternary mixture, the
fluctuation theory of solution will be combined with
the assumption that the system is dilute with respect
to the solute.

The paper is organized as follows: first, an equation
for the activity coefficient of a low concentration so-
lute in individual and binary solvents will be written.
This equation will be combined with the fluctuation
theory of solutions and withEqs. (1)–(3)to derive
an expression for the drug solubility. Further, the ex-
pression obtained will be compared with experimen-
tal data and with the infinite dilution approximation
(Ruckenstein and Shulgin, 2003a,b).

2. Theory

2.1. The activity coefficient of a solute in its dilute
range in binary solvents

For a binary dilute mixture,Debenedetti and Kumar
(1986) suggested the following series expansion for
the fugacity coefficient of a solute (φb

2)

ln φb
2 = ln φ

b,∞
2 − k22x

b
2 (4)

whereφb,∞
2 is the fugacity coefficient at infinite dilu-

tion, xb2 is the mole fraction of the solute, and
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γb
2 being the activity coefficient of the solute in the

binary mixture.
The above expression was extended to ternary mix-

tures, containing a solute and a cosolvent in low con-
centrations byChialvo (1993), Jonah and Cochran
(1994), andMunoz et al. (1995).

In this paper we consider the case in which only
the solute concentration is small (Ruckenstein and
Shulgin, 2002). Let us consider those compositions
(mole fraction) of the ternary mixture (xt1, xt2, xt3)
which are located on the line connecting the points
(xt1 = 0, xt2 = 1, xt3 = 0) and (xt1 = x0

1, xt2 = 0,
xt3 = x0

3) in the Gibbs triangle (Fig. 1). This line con-
nects the pure component 2 (a solute) and the binary
mixtures 1–3 (cosolvent+ solvent) with a mole frac-
tion of component 1 equal tox0

1. Physically speaking,
this line represents the locus of the compositions of
ternary mixtures formed by adding a solute (2) to a
binary mixture of a solvent (3) and a cosolvent (1).

On the above line, the following relation holds(
xt1

xt3

)
=
(
x0

1

x0
3

)
= α (6)

Becausext1 + xt2 + xt3 = 1, one can write that

xt1 = α
1 − xt2

1 + α
(7)

and

xt3 = 1 − xt2

1 + α
(8)

Fig. 1. The change of composition in a ternary mixture
solute+ binary solvent, when a solute (2) is added to a binary
solvents (1–3) of composition (mole fractions) (x0

1, x0
3).

For the fugacity coefficient of a solute in a ternary
dilute solution, one can write, at constant temperature
and pressure, near the compositionxt1 = x0

1, xt2 = 0,
xt3 = x0

3, the following expression
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whereφt
2 is the fugacity coefficient of the solute in a

ternary mixture andφt
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3) = φ
t,∞
2 is its value

at infinite dilution of the solute.
If, at a given pressure and temperature, the mole

fractions of components 1 and 3 are taken as inde-
pendent variables, one can rewriteEq. (9) under the
form
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which, taking into accountEqs. (7) and (8), becomes
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or equivalently,
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A similar equation can be written for the activity
coefficient of a low concentration solute in a ternary
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mixture
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Eq. (13)will be used for the drug solubility when
its saturated solution in a binary solvent can be con-
sidered dilute. First, expressions for the two partial
derivatives inEq. (13) will be derived on the basis
of the fluctuation theory of solutions (Kirkwood and
Buff, 1951).

2.2. Expressions for the derivatives(∂ln γt
2/∂x

t
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and (∂ln γt
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t
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It was shown previously, that, for the derivatives of
the activity coefficient (γt

2) one can write the following
relations (Ruckenstein and Shulgin, 2001)(
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whereck is the bulk molecular concentration of com-
ponentk andGαβ is the Kirkwood–Buff integral given
by

Gαβ =
∫ ∞

0
(gαβ − 1)4πr2 dr (16)

In the above expressions,gαβ is the radial distribution
function between speciesα and β, r is the distance
between the centers of moleculesα andβ, and∆αβ

and∆123 are defined as follows

∆αβ = Gαα + Gββ − 2Gαβ, α 	= β (17)

and

∆123= G11G22 + G11G33 + G22G33 + 2G12G13

+ 2G12G23 + 2G13G23 − G2
12 − G2

13 − G2
23

− 2G11G23 − 2G22G13 − 2G33G12 (18)

It was shown that the expressions in the brackets
in the numerators ofEqs. (14) and (15)and∆123 can
be expressed in terms of∆αβ as follows (Ruckenstein
and Shulgin, 2001)
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The insertion ofEqs. (19)–(21)into Eqs. (14) and
(15)provides the following expressions for the deriva-
tives(∂ln γt
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wherec0
1 andc0

3 are the bulk molecular concentrations
of components 1 and 3 in the solute-free binary 1–3
solvent.

The derivatives (∂ln γt
2/∂x

t
1)P,T,xt3

and (∂ln γt
2/

∂xt3)P,T,xt1
are expressed inEqs. (22) and (23)in

terms of∆αβ and the concentrations of the solute-free
mixed solvent. It is worth noting that∆αβ is a mea-
sure of nonideality (Ben-Naim, 1977) of the binary
mixtureα−β, because for an ideal mixture∆αβ = 0.
Furthermore, being measures of nonideality, the pa-
rameters∆αβ have a clear physical meaning and
this fact is useful in the thermodynamic analysis of
multicomponent mixtures.

2.3. Equations for the solubility of a solid in a
binary solvent

Insertion ofEqs. (22)–(23)into Eq. (12)leads to
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whereV is the molar volume of the solute-free binary
solvent.

An expression for the activity coefficient of a solute
at infinite dilution in a ternary mixtureγt

2(x
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3)

was obtained elsewhere (Ruckenstein and Shulgin,
2003b) and has the form
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whereA is a composition independent constant
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and
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In Eqs. (26) and (27), γb
1 andγb

3 are the activity co-
efficients of the cosolvent and solvent in a solute-free
binary solvent.

The combination ofEqs. (24)–(27)with the equa-
tion for the solid–liquid equilibrium provides a rela-
tion for the solubility of a solute forming a dilute so-
lution in a ternary mixture.

ln yt
2 = (∆12 − ∆23)xt2=0

(
I1

2

)
−
(
I2

2

)

+ yt
2

(x0
1∆12 + x0

3∆23 − x0
1x

0
3∆13)xt2=0

V + x0
1x

0
3∆13

+ Ā

− yt
2

x0
1x

0
3((∆12)

2 + (∆13)
2 + (∆23)

2

− 2∆12∆13 − 2∆12∆23

− 2∆13∆23)xt2=0

4V(V + x0
1x

0
3∆13)

(28)

where Ā(P, T) = −A(P, T) + ln[fS
2 /f L

2 (T, P)] is a
composition-independent constant.

Eq. (28)allows one to calculate the solubility of a
solute in a binary mixed solvent if the composition de-
pendence of the activity coefficients, the molar volume
V, the nonideality parameters∆12, ∆23 and the con-
stantĀ are known. The nonideality parameters∆αβ

for a binary mixtureα − β can be obtained from the
composition dependence of the activity coefficients in
the above mixture using the expression (Kirkwood and
Buff, 1951)

∆αβ = −
V(∂ln γb

β/∂x
0
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0
β(∂ln γb

β/∂x
0
β)P,T

(29)



226 E. Ruckenstein, I. Shulgin / International Journal of Pharmaceutics 278 (2004) 221–229

Table 1
The solubility of drugs in binary solvents calculated withEq. (28)

Drug Mixed solvent Deviation from experimental dataa

Eq. (28)combined with
Wilson’s equation

Infinite dilution approximation
combined with Wilson’s equationb

Caffeine Water/N,N-dimethylformamide 2.8 6.5
Caffeine Water/1,4-dioxane 5.3 9.6
Sulfamethizole Water/1,4-dioxane 16.8 18.9
Methyl p-hydroxybenzoate Water/propylene glycol 12.8 12.4
Methyl p-aminobenzoate Water/propylene glycol 6.5 6.6
Ethyl p-aminobenzoate Water/propylene glycol 8.1 8.5
Propyl p-hydroxybenzoate Water/propylene glycol 13.5 16.1
Butyl p-hydroxybenzoate Water/propylene glycol 22.4 24.0

a Deviation from experimental data calculated as MPD (%) (the mean percentage deviation) defined as 100×∑N
i=1|(xexp

i −xcalc
i )/x

exp
i |/N,

wherex
exp
i and xcalc

i are the experimental and calculated solubilities, andN is the number of experimental points.
b These results were taken from our previous publication (Ruckenstein and Shulgin, 2003b).

Eq. (29)can be used to calculate the parameter∆αβ

from vapor–liquid equilibrium data for mixed binary
solvents. Unfortunately, for most solute+ individual
solvent pairs such data are not available.

3. Application of Eq. (28) to the solubility of
drugs in a binary solvent

Being a transcendent equation,Eq. (28)cannot pro-
vide an explicit expression for the solubility of a drug
(yt

2), but has to be solved numerically for every set of
parameters.

In order to checkEq. (28), the solubilities of caf-
feine in the water/N,N-dimethylformamide (Herrador
and Gonzalez, 1997) and water/1,4-dioxane mixtures
(Adjei et al., 1980), as well as the solubilities of sul-
famethizole in the mixture water/1,4-dioxane (Reillo
et al., 1995) and of five solutes in water/propylene
glycol (Rubino and Obeng, 1991) were employed.

First, ∆12, ∆23, andĀ were considered adjustable
parameters which were determined by fittingEq. (28)
to the experimental solubility data. The activity co-
efficients of the components in binary solvents were
expressed via the Wilson equation (Wilson, 1964) (of
course, any other expressions for the activity coeffi-
cients can be used)

ln γb
1 = −ln(x0

1 + x0
3L13)

+ x0
3

(
L13

x0
1 + x0

3L13
− L31

x0
3 + x0

1L31

)
(30)

and

ln γb
3 = −ln(x0

3 + x0
1L31)

− x0
1

(
L13

x0
1 + x0

3L13
− L31

x0
3 + x0

1L31

)
(31)

whereL13 andL31 are the Wilson parameters.
The parametersL13 and L31 were also de-

termined from the experimental solubility data.
Therefore,Eq. (28) can be considered as a five pa-
rameters equation. The results of the calculations
as well as a comparison with those obtained un-
der the infinite dilution approximation are listed in
Table 1.

Table 1shows thatEq. (28)provides slightly better
results that the correlation based on the infinite dilu-
tion approximation. However, it is not clear whether
this improvement was caused by the use of the more
realistic dilute approximation, or of a larger number of
adjustable parameters (five in the present case instead
of four in the equation based on the infinite dilution
approximation).

The new equation can be consider as a correction to
the infinite dilution approximation. Indeed, combining
Eq. (24)with Eq. (3)and with the following equation
involving the infinite dilution approximation

fS
2

f L
2 (T, P)

= zt2γ
t
2(x

0
1,0, x0

3) (32)
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Table 2
Comparison between the drug solubilities in aqueous binary solvents calculated usingEq. (34) and the infinite dilution approximation
(Ruckenstein and Shulgin, 2003a)

System number Cosolvent Solute MPD (%)a

Eq. (34)b The infinite dilution
approximation (Ruckenstein
and Shulgin, 2003a)c

1 N,N-dimethylformamide Sulfadiazine 11.8 11.4
2 N,N-dimethylformamide Theophyllene 14.1 14.1
3 N,N-dimethylformamide Caffeine 11.9 11.9
4 Dioxane Caffeine 10.2 12.8
5 Dioxane p-Hydroxybenzoic acid 21.7 28.1
6 Dioxane Paracetamol 7.3 15.4
7 Dioxane Phenacetin 6.2 6.9
8 Dioxane Sulfadiazine 5.0 7.6
9 Dioxane Sulfadimidine 7.4 5.4
10 Dioxane Sulfamethizole 12.0 12.7
11 Dioxane Sulfamethoxazole 9.1 10.3
12 Dioxane Sulfapyridine 7.6 9.0
13 Dioxane Sulfamethoxypyridazine 6.6 7.8
14 Dioxane Sulfanilamide 9.1 14.6
15 Dioxane Sulfisomidine 12.0 13.0
16 Dioxane Theobromine 23.6 23.7
17 Dioxane Theophyllene 13.7 16.6
18 Ethanol Paracetamol 7.3 15.4
19 Ethanol Sulfamethazine 7.5 7.6
20 Ethanol Sulfanilamide 22.2 22.5
21 Ethanol Oxolinic acid 9.5 9.5
22 Ethylene glycol Naphthalene 9.1 9.3
23 Ethylene glycol Theophyllene 4.6 4.6
24 Methanol Theophyllene 11.1 11.1
25 Propylene glycol Butylp-aminobenzoate 19.6 19.7
26 Propylene glycol Butylp-hydroxybenzoate 36.3 36.4
27 Propylene glycol Ethylp-aminobenzoate 10.7 10.7
28 Propylene glycol Ethylp-hydroxybenzoate 4.0 4.6
29 Propylene glycol Methylp-aminobenzoate 9.3 9.3
30 Propylene glycol Methylp-hydroxybenzoate 17.8 18.4
31 Propylene glycol Propylp-aminobenzoate 13.9 14.2
32 Propylene glycol Propylp-hydroxybenzoate 26.8 27.1

Averaged 11.8 13.3

a Deviation from experimental data calculated as MPD (%) (the mean percentage deviation) defined as 100×∑Nj

i=1|(xexp
i −xcalc

i )/x
exp
i |/Nj ,

wherex
exp
i andxcalc

i are experimental and calculated solubilities (mole fractions), andNj is the number of experimental points in the data
set j.

b The parameter∆13 was calculated from vapor–liquid equilibrium data for binary solvents usingEq. (29). The activity coefficients of
the components in the binary solvents were expressed via the Wilson equation (Wilson, 1964) and the Wilson parametersL13 and L31

were taken from Gmehling’s vapor–liquid equilibrium data compilation (Gmehling et al., 1977–2003).
c The values of MPD were calculated in a previous paper (Ruckenstein and Shulgin, 2003a).
d The average was calculated as 100×∑M

j=1
∑Nj

i=1|(xexp
i − xcalc

i )/x
exp
i |/∑M

j=1Nj wherex
exp
i andxcalc

i are the experimental and calculated
solubilities (mole fractions),Nj is the number of experimental points in the data setj, and M is the number of experimental data sets
(here 32).



228 E. Ruckenstein, I. Shulgin / International Journal of Pharmaceutics 278 (2004) 221–229

one obtains

ln yt
2 = ln zt2 + yt

2

{x0
1∆12 + x0

3∆23 − x0
1x

0
3∆13}xt2=0

V + x0
1x

0
3∆13

− yt
2

x0
1x

0
3((∆12)

2 + (∆13)
2 + (∆23)

2

− 2∆12∆13 − 2∆12∆23

− 2∆13∆23)xt2=0

4V(V + x0
1x

0
3∆13)

(33)

wherezt2 is the solubility of the solute under the infinite
dilution approximation.

Because the infinite dilution approximation pro-
vides in many cases accurate results (Ruckenstein
and Shulgin, 2003a), the difference betweenyt

2 and
zt2 is expected to be small. Consequently, one can
expand ln(yt

2/z
t
2) in a Taylor series to obtain for

the solute solubility in the dilute approximation, the
expression

yt
2 = zt2

1 − zt2Φ
(34)

where

Φ =
(x0

1∆12 + x0
3∆23 − x0

1x
0
3∆13)xt2=0

V + x0
1x

0
3∆13

−

x0
1x

0
3((∆12)

2 + (∆13)
2 + (∆23)

2 − 2∆12∆13

− 2∆12∆23 − 2∆13∆23)xt2=0

4V(V + x0
1x

0
3∆13)
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Fig. 2. Comparison between experimental (�) (Romero et al.,
1996) and predicted (the solid line is based onEq. (34), while
the dashed line is based on the infinite dilution approximation
(Ruckenstein and Shulgin, 2003a)) solubilities of the paracetomol
(S is the mole fraction of paracetomol) in the binary solvent
water/1,4-dioxane (xDIOX is the mole fraction of dioxane) at room
temperature.

Eq. (34) allows one to correct the solubility of a
solute under the infinite dilution approximation if the
properties of the binary solvent and the nonideality pa-
rameters∆12 and∆23 are known. Any of the methods
available can be used to calculate the solubility of a
solute under the infinite dilution approximation. For il-
lustration purposes we selected a method suggested by
us previously, and useEq. (34)for the same 32 exper-
imental sets, which were utilized there (Ruckenstein
and Shulgin, 2003a). The results of the calculations
are given inTable 2. Fig. 2 provides details for a par-
ticular case.

4. Discussion and conclusion

In contrast to previous papers (Ruckenstein and
Shulgin, 2003a–d), the solubility of the drug in a bi-
nary solvent is considered to be finite, and the infinite
dilution approximation is replaced by a more realistic
one, the dilute solution approximation. An expression
for the activity coefficient of a solute at low concen-
trations in a binary solvent was derived by combin-
ing the fluctuation theory of solutions (Kirkwood and
Buff, 1951) with the dilute approximation. This pro-
cedure allowed one to relate the activity coefficient of
a solute forming a dilute solution in a binary solvent
to the solvent properties and some parameters char-
acterizing the nonidealities of the various pairs of the
ternary mixture.

Eq. (28) thus obtained can be used to represent
the solubility of poorly soluble drugs in aqueous
mixed solvents if information about the properties
of the binary solvent (composition, phase equilibria
and molar volume), the nonideality parameters and
the constant̄A is available. These parameters can be
considered as adjustable, and determined by fitting
the experimental solubilities in the binary solvent. We
applied such a procedure to the solubilities of caf-
feine in water/N,N-dimethylformamide (Herrador and
Gonzalez, 1997) and water/1,4-dioxane (Adjei et al.,
1980), of sulfamethizole in water/1,4-dioxane (Reillo
et al., 1995) as well as of five solutes in water/
propylene glycol (Rubino and Obeng, 1991). It was
shown thatEq. (28)provides accurate correlations of
the experimental data.

In essence, the developed computational scheme
is a first order perturbation to the infinite dilution
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approximation. Therefore, the results regarding the
solubility of poorly soluble drugs in aqueous mixed
solvents obtained from the equations based on the infi-
nite dilution approximation, can be slightly improved
by the suggested method. The procedure was applied
to 32 experimental data sets to show that the infinite
dilution approximation is improved by the dilute so-
lution approximation.
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